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Abstract—In this paper, we introduce a reprocessing of the en-
tire SeaWinds on QuikSCAT mission. The goal of the reprocessing
is to create a climate data record suitable for climate studies and to
incorporate recent algorithm improvements. Three different levels
of QuikSCAT data are produced at the Jet Propulsion Laboratory:
L1B, geolocated, calibrated, backscatter measurements in chrono-
logical order by acquisition time; L2A, backscatter measurements
binned into a geographical grid; and L2B, gridded ocean surface
wind vectors. This reprocessing only changes the L2A and L2B
data; we have not changed the L1B processing at all. We introduce
new algorithms used in the L1B to L2A processing and in the
L2A to L2B processing. After introducing our new algorithms,
we show the validation studies performed to date, which include
comparisons to numerical weather products, comparisons to buoy
data sets, comparisons to other remote sensing instruments, and
spectral considerations.

Index Terms—Ocean winds, radar, rain, remote sensing,
scatterometery.

I. INTRODUCTION

S EAWINDS on QuikSCAT was designed with the primary
mission to measure ocean surface vector winds (OVWs).

QuikSCAT is a microwave scatterometer, which measures the
ocean surface roughness at Ku-Band (13.4 GHz/2.24 cm).
SeaWinds on QuikSCAT obtained global coverage of ocean
surface winds for over a decade from its launch in 1999 until
November 2009. With more than a decade of observations,
we have been working with the International Ocean Vector
Winds Science Team to reprocess the QuikSCAT data for use in
climate studies. OVW is a critical variable in many geophysical
studies, and QuikSCAT was able to observe 93% of the ocean
surface daily. QuikSCAT provides a rich data set not only due
to the ten years of continuous data but also due to the myriad
of applications, namely, ice monitoring [1], soil moisture [2],
freeze thaw [3], and snow [4], in addition to OVW.

This reprocessing includes many significant improvements.
The previous high-resolution 12.5-km data product (hereafter
referred to as V2L2B12) [5] was noisy and contained many
wind vector cells (WVCs) lacking enough measurements for
wind retrieval due to sampling limitations in particular regions
of the swath. In addition, both 12.5- and 25-km V2 data
products contained significant rain contamination [6] and had
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noisy direction retrievals due to insufficient filtering. The new
(V3L2B12) processing overcomes many of these shortcomings
and uses a new model function developed by Remote Sensing
Systems [7]. In Fig. 1, we plot the speed (in gray scale) and
direction (as arrows) for the V2 products [see Fig. 1(b) and (c)],
the V3L2B12 product [see Fig. 1(a)], and European Centre for
Medium-Range Weather Forecasts (ECMWF) [see Fig. 1(d)]
for comparison. The V3L2B12 product [see Fig. 1(a)] shows
much less noise in the speed and direction than the previous
V2L2B12 product [see Fig. 1(b)] and has less noise than
the previous V2 L2B25 product [see Fig. 1(c)]. The missing
WVCs in Fig. 1(b) are completely restored in Fig. 1(a), and the
regions of rain contamination in Fig. 1(b) and (c) have been
significantly reduced in the V3L2B12 product [see Fig. 1(a)].

Scatterometers are microwave radars that measure the nor-
malized radar backscatter cross-section (σ0). Empirical and
theoretical geophysical model functions (GMFs) have been
extensively developed for the radar cross section as a func-
tion of the equivalent neutral wind speed and direction at
10-m height, incidence angle, relative azimuth angle, radar
wavelength, and polarization [8]–[13]. In Fig. 2, we plot the
GMF as a function of relative azimuth angle for different wind
speeds. From this figure, it is clear that the one scatterometer
measurement is not sufficient to determine the wind speed and
direction. Typically, four observations from different relative
azimuth angles are needed to determine the wind speed and
direction. QuikSCAT achieves the required observations by
using two different conically scanning antenna beams, namely,
an H-polarized inner beam at 46◦ and a V-polarized beam
at 54◦; the OSCAT scatterometer on OceanSat-II also uses
a similar configuration [14], [15]. The other main configura-
tion for scatterometers is the fan beam type, such as SeaSAT
[10], ERS-1/2 [16], NASA Scatterometer [9], and Advanced
Scatterometer [17]. The fan beam type has consistent mea-
surement geometry (azimuthal separation of looks per WVC)
across the swath, whereas the pencil beam type has varying
geometry across the swath and is poor in the nadir region
and far swath. However, the fan beam type has a significantly
narrower swath and has a “nadir gap,” whereas the pencil beam
type images a very wide swath and has no gaps.

The wind retrieval processing involves three main steps:
1) a point-wise maximum-likelihood estimate of wind speed
and wind direction, which typically has four ambiguities;
2) a median filter, which selects the best ambiguity; and 3) the
directional interval retrieval (DIR) processing [18] step, which
uses the directional spread of the objective function and allows
the retrieved wind direction to vary within the region around
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Fig. 1. (a) (In gray scale) QuikSCAT retrieved speed and (arrows) direction for the 12.5-km V3 L2B processing. (b) 12.5-km V2. (c) 25-km V2. (d) ECMWF.
The two high-resolution retrievals have the arrows plotted at every other WVC in each of the cross-track and along-track dimensions. We have drawn ellipses
around some regions of significant rain errors in the previous L2B12 processing in (b). These plots demonstrate the main improvements in the V3 12.5-km L2B
data set, namely, less noise in the direction retrievals, the absence of gaps in the high-resolution retrievals, and (upper right corner of wind field) the removal of
high wind speeds due to rain contamination.

the selected ambiguity. This final step allows us to further
smoothen the wind retrievals in the regions where instrument
performance is poor and significantly improves the final wind
vector products.

In Section II, we give an overview of the various algorithm
improvements included in this reprocessing. In Section III, we
present the results of some validation studies comparing the
performance of this product to the previous high-resolution
QuikSCAT L2 product. In Section IV, we leverage the decade-
long history of QuikSCAT observations and find no significant
trend in wind speed.

II. ALGORITHM IMPROVEMENTS

The V3L2B12 OVW data product consists of wind retrievals
based on a 12.5-km grid, which is the same as in the V2L2B12
12.5-km data product [5]. We begin with the same L1B data
as used in the previous processing. We have introduced a

number of algorithm improvements, including changes at the
L1B to L2A processing with binning improvements to enhance
resolution, decrease noise, and reduce gaps in wind field. The
L2A to L2B processing includes model function improvements,
correction of rain contaminated speeds, and adjustments to the
DIR thresholds. The post-L2B data processing includes a cross-
track bias removal.

A. Level 1B To Level 2A Processing: Measurement
Binning Improvement

The fundamental QuikSCAT measurements are backscatter
“slices.” The data obtained within each 25 km × 35 km antenna
footprint are broken up by range to target into 25 km × 7 km
slices. The L1B to L2A processing of the slice σ0 data begins
with the assignment of every slice to a WVC. This is a crucial
part of the wind vector processing, as it determines what
observations are grouped together for wind retrieval. To obtain
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Fig. 2. Ku-2011 GMF for VV-polarization at 54◦ incidence angle. x-Axis is
the relative azimuth angle between the wind and radar look directions. y-Axis
is the σ0 in decibels. The different curves are the GMFs for different wind
speeds.

Fig. 3. Diagram of the L2A WVC grid and the three sequential slice observa-
tions. Filled dots are WVC centroids; circles are slice centroids. (Solid square)
Extent of one WVC grid cell. (Dashed square) Overlap region. Dash–dot outline
represents the nominal slice boundary used in the overlap algorithm.

a good wind solution, we need enough observations of sufficient
quality for all available azimuths in each WVC.

In this reprocessing, we introduce a new gridding algorithm,
i.e., the overlap algorithm. The previous processing uses what
we refer to as the centroid algorithm, which places a given σ0

slice measurement in a WVC if the centroid of the slice lies
within that WVC. However, the overlap algorithm places a slice
σ0 in a WVC if any portion of the nominal slice footprint falls
within the “overlap” region. In Fig. 3, we show a diagram of
a WVC and an example of how the slices fall with respect
to this WVC. The filled black dots represent the centers of
WVCs, the solid line represents the nominal WVC boundaries,
and the dashed line represents the “overlap” region. The circles
represent the slice centroids, and the dash–dot lines represent
the nominal slice boundaries. If the circle lies within the solid

box, then the slice is placed into that WVC when using the
centroid algorithm; however, when using the overlap, we place
a slice into a WVC if any portion of the area enclosed by the
dash–dot line lies within the dashed line. An important point to
note is that the overlap algorithm can result in a slice being
assigned to multiple WVCs, whereas the centroid algorithm
always assigns a slice to only one WVC. Overlap processing
introduces some spatial correlation among the WVCs at the σ0

level and results in a slight decrease in resolution.
After gridding, we composite all sequential slices from the

same antenna footprint that are assigned into the same WVC
into one L2A σ0 observation. These observations are the inputs
to wind retrieval processing. Generally, the new gridding algo-
rithm results in an increased number of slices being assigned
to the same WVC, which results in improved wind retrieval
performance. In Fig. 4(a), we plot the average number of
slices per composite and composites per WVC for the centroid
and overlap algorithms. We see a significant increase in the
composites per WVC versus cross-track index (CTI), which
leads to improved wind retrieval performance. In Fig. 4(b), we
plot the percentage of WVCs that do not have wind retrieval due
to too few measurements in the V2L2B12 product on top and
the V3L2B12 product on the bottom. We see a vast reduction in
the percentage of WVCs that do not have wind retrieval when
using the overlap processing, most noticeable near the center of
the swath (CTI 76) and in the single-beam portions of the swath.
The previous product had holes in these regions due to in-
strument geometry, and overlap gridding wholly mitigates this
issue at the cost of a somewhat reduced resolution. Although
the resolution is somewhat reduced by overlap gridding, wind
retrieval error is significantly reduced. An important piece of
evidence showing that this trade is favorable is that the accuracy
of the V3L2B12 winds with respect to point wind estimates
(buoys) are improved (see Fig. 11).

B. L2A to L2B Processing: DIR Thresholds

The V2L2B12 product contained significant direction noise,
which impeded the computation of wind vector derivative
products (divergence, curl, etc.). This noise is due to the
direction computed in the DIR algorithm “hitting” the hard
limits imposed by the 80% probability threshold value used
to build the direction ranges [18]. In the V3L2B12 product,
we have adjusted the DIR probability threshold from 80% to
99%. This results in a significant reduction in direction noise,
as demonstrated in Fig. 6.

C. L2A to L2B Processing: Model Function

The V3L2B12 product uses a recently redeveloped model
function for Ku-Band from Remote Sensing Systems, Ku2011,
which is an improved version of the Ku2001 QuikSCAT model
function [12]. Due to the long history of passive wind retrievals
[e.g., Special Sensor Microwave Imager (SSMI)] and the abun-
dance of WindSAT/QuikSCAT matchups, WindSAT was used
to retune the Ku2001 model function [7], [19]. This allows
an intercalibrated record of ocean wind products from passive
and active microwave remote sensing instruments. The new
model function introduces a wind speed bias as compared with
ECMWF and other numerical weather products (NWPs). This
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Fig. 4. (Top left) Average number of composites/WVC for the centroid (V2L2B12-solid line) and overlap gridding algorithms (V3L2B12-dashed line), both
versus CTI. (Bottom left) Average number of slices/composite for the (solid line) V2 and (dashed line) V3 gridding methods versus CTI. (Top right) Percentage
of WVCs without wind retrieval versus CTI for the V2L2B12 product (centroid gridding) and (bottom right) same for the V3L2B12 product (overlap gridding).

is because this GMF is tuned to buoys instead of being tuned
to ECMWF, whereas the previous Ku2001 model function was
tuned to ECMWF [12].

D. L2A to L2B Processing: Rain Flagging and Correction

The V3L2B12 product contains a rain flag, a rain impact
quantity, and a rain-corrected speed. The rain flag is unchanged
from the V2L2B12 product; however, both the rain impact
and rain-corrected speed are new additions. The rain impact
and rain-correction algorithm are based on an artificial neural
network; in Fig. 5, we show a block diagram of the neural-
network algorithm. The inputs to the neural network are the
four flavors of σ0 (fore HH, fore VV, aft HH, and aft VV), the
first rank wind speed solution, and the cross-track distance [6].
We only perform this correction in the dual-beam portion of
the swath, thus, no rain correction is estimated or applied in
the outer swath. From the neural network, we estimate a rain
impact quantity, which is meant to quantify the rain contami-
nation level on that particular WVC. Whenever the rain impact
quantity exceeds a threshold, we apply the rain speed correc-
tion and assign every ambiguity the same objective function
value, indicating that the instrument does not have any skill in
ranking ambiguities in rain.

E. Post-L2B Processing: Cross-Track Bias Correction

After the completion of L2B processing, we apply a final
cross-track bias correction, which removes residual speed bi-
ases as a function of CTI. We first generate a table of speed
bias, as compared with ECMWF as a function of retrieved
wind speed and CTI for both rain-free and rainy conditions.
Then, we create the correction table by subtracting from the
computed speed bias for a given CTI and the retrieved speed
for CTI 37 and 115 (in the so-called “sweet spot”). We perform
this correction separately for rain-free and rainy observations.
This way, we flatten the speed bias trend in the cross-track
dimension; however, we do not remove the overall bias, as
compared with ECMWF. ECMWF is only used as a reference
OVW that does not have any cross-track dependence.

Fig. 5. Overview of the processing flow for the rain impact and correction
algorithm. The inputs to the algorithm are the cross-track-distance, fore and
aft σHH

0 , fore and aft σVV
0 , and the wind speed solution with the optimum

objective function value.

III. VALIDATION

Here, we validate the V3L2B12 data product using data
from all of year 2008; results from other years are nearly
identical and not shown. One important application of OVW
retrievals is for the generation of wind derivative products such
as wind divergence, wind curl, wind stress divergence, and
wind stress curl. The V2L2B12 product was not well suited to
computation of these quantities due to the high levels of noise
in the retrievals, which was particularly evident in the wind di-
rection. In Fig. 6, we quantify the direction noise by comparing
the cumulative distribution function (CDF) of the WVC abso-
lute direction error, as compared with the surrounding 3 × 3
median filtered direction using all of year 20081 versus CTI.
The previous processing has significant shot noise, giving rise
to long tails in the CDF of the direction difference, particularly
in the nadir region and single-beam swath. In the V3L2B12
product, the magnitude of the direction noise is reduced by a

1Note that we are applying a vector median filter to the sines and cosines of
the retrieved wind direction as opposed to filtering the direction itself.
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Fig. 6. (Left) CDF of the absolute difference between the retrieved direction
and the surrounding 3 × 3 median filtered direction for the V2L2B12 product
as a function of CTI. (Right) Same as the left but for the V3L2B12 product.
The contour curves are at the 75%, 80%, 85%, 90%, and 95% CDF levels for
both plots. Note the vastly reduced noise level in V3L2B12, in particular, there
is a factor of 20 difference in the Y -scale of the two plots.

factor of 20—mostly due to the new gridding algorithm and
changed DIR [18] thresholds.

A. Comparison to NWPs: ECMWF

In choosing a NWP to perform global validations against it,
we have used ECMWF instead of National Centers for Envi-
ronmental Prediction (NCEP) since we use the NCEP forecast
product to seed the ambiguity removal process. In Fig. 7, we
compute the speed mean difference in the upper left, speed
root-mean-square (RMS) difference in the upper right, direction
RMS difference in the lower left, and percentage of WVCs that
have retrieved direction within 45◦ of ECMWF winds in the
lower right for rain-free data. The V3L2B12 product has more
mean difference, as compared with ECMWF than the V2L2B12
product; however, this is due to the model function and was
not unexpected. Even with this moderate increase in the mean
difference, the speed RMS difference has decreased, signifi-
cantly indicating less noise in the new wind vector retrievals.
In the direction RMS difference and percentage of WVCs
within 45◦ of ECMWF, we note significant improvements in
the V3L2B12 product. In Fig. 7(b), we plot the same for rain-
flagged data. Note the very large reduction in the overall mean
speed difference and RMS speed difference in the V3L2B12
product, as compared with the V2L2B12 product. We also see a
significant improvement in the direction performance with the
new rain algorithm. This is due to the equal treatment of the
ambiguities during ambiguity removal processing regardless of
the objective function value when the rain speed correction is
applied.

In Fig. 8(a), we plot two-dimensional (2-D) log histograms of
retrieved speed and direction versus ECMWF speed/direction
for all rain-free observations in year 2008; in the upper right,
we plot the V3L2B12 speed versus the ECMWF speed; in the
upper left, we plot the V3L2B12 direction versus the ECMWF
direction; and in the lower panel, we plot the same for the
V2L2B12 product. Notice the reduction in erroneous high-wind
speed retrievals where ECMWF has a low wind speed and the
reduction in the tendency to retrieve cross-track wind directions
in the V3L2B12 product. In Fig. 8(b), we plot the same for
all rain-flagged data. In the V2L2B12 product, we see that
rain contamination has introduced a large speed bias for low
ECMWF wind speeds; in the V3L2B12 product, this effect is
almost entirely mitigated. Another effect of rain contamination
in the V2L2B12 product is the tendency for the retrieved wind

Fig. 7. (a) (Upper left) Speed mean difference. (Upper-right) Speed RMS
difference. (Lower left) Direction RMS difference. (Lower right) Percentage of
WVCs that have the wind retrieval within 45◦ of ECMWF winds. All statistics
are computed with respect to triply interpolated ECMWF wind vectors, and
we plot the new reprocessing as dashed lines and the V2L2B12 product as solid
lines. We include only data flagged as rain free and data such that the collocated
ECMWF wind speed is between 3 and 30 m/s. In (b), we plot the same for rain-
flagged WVCs.

direction to lie in the cross-track direction, hence generally
somewhat above and below ±90◦ relative north. While the
V3L2B12 product also shows this tendency for wind retrievals
to lie in the cross-track direction, the magnitude is somewhat
reduced, and the histograms are more focused on the 1 : 1 line.

In Fig. 9, we plot the speed (on top) and direction (in the
middle) mean and the standard deviation (STD) of the differ-
ence, as compared with ECMWF, as a function of SSMI rain
rate for all SSMI/QuikSCAT matchups in 2008. On the bottom
in Fig. 9, we plot the log histogram of the SSMI rain rate.
The matchup criteria were 30 min in time and less than 1/4◦ in
latitude/longitude. We see a very significant improvement in the
speed bias as compared with ECMWF in rainy conditions. The
speed STD has also decreased; however, it is still large com-
pared with rain-free conditions. We also note that the direction.
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Fig. 8. (a) (Upper left) Two-dimensional log histogram of rain-free retrieved
speeds compared with the ECMWF speed for the V3L2B12 product. (Lower
left) Same for the V2L2B12 product. Note that lighter shades of gray indi-
cate more counts. (Upper right) Two-dimensional log histogram for rain-free
retrieved directions compared with the ECMWF direction for the V3L2B12
product. (Lower right) Same for the V2L2B12 product. In (b), we plot the same
for rain-flagged WVCs. Notice the high wind speed bias has been removed and
that the directional histogram has reduced tendency to retrieve directions that
are cross-track.

B. Buoys

We have also performed extensive buoy validations of our
new wind processing. We used buoys from the National Data
Buoy Center, Pilot Research Moored Array in the Tropical At-
lantic project, and Tropical Atmosphere Ocean/Triangle Trans-
Ocean Buoy Network. In Fig. 10, we plot the locations and buoy
type for all buoys used in this analysis.

The buoy observations were spatially and temporally collo-
cated with QuikSCAT WVCs by using the nearest WVC to each
buoy such that the WVC was within 12.5 km of the buoy, and
the time difference was less than 30 min. Finally, we use the
formalism presented in [20] to solve for the equivalent neutral
wind speed at a 10-m height from the actual buoy speed and
other in situ observations (water temperature, air temperature,
etc.). The conversion from actual buoy wind speed to equivalent

Fig. 9. (Top) Speed bias relative to ECMWF as a dashed line and the speed
standard error deviation as plus/minus brackets about the bias. (Middle) Same
for the direction error, as compared with ECMWF. (Bottom) Histogram of
the SSMI rain rate. These statistics were generated from all QuikSCAT/SSMI
matchups in year 2008, and all the statistics are done as a function of the
SSMI rain rate. We show statistics for the V3L2B12 product in gray and for
the V2L2B12 product in black.

Fig. 10. Locations of buoys used in buoy analysis.

neutral wind speed involves a correction for anemometer height
and for atmospheric stability [20].

Note that overall, the speed and direction STD has been
reduced in the V3L2B12 product, except for perhaps the speed
STD for speeds less than 2 m/s. In [21], an extensive buoy
validation was performed for the 25-km data product, and it
was shown that the DIR retrievals had an RMS speed error of
1.01 m/s and an RMS direction error of 22.4◦ for buoy speeds
greater than 3 m/s. In Fig. 11, we plot the speed bias and STD
with respect to the buoy wind speed on top, the direction bias
and STD in the middle, and the histogram of buoy wind speeds
on the bottom. This plot includes all buoys from year 2008. We
see that for the new product, the overall speed RMS difference
is 1.01 m/s, and the direction RMS difference is 17.4◦.

C. Spectral Characteristics of V3L2B12 Product and
V2L2B12 Product

From turbulence theory, we expect a kα power-law scaling
in the kinetic energy spectra, and consistent results have been
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Fig. 11. (Top) QuikSCAT speed bias as compared with buoy speed and the
QuikSCAT speed standard deviation as plus/minus brackets about this line. In
black, we plot the V2L2B12 product, and in gray, we plot the V3L2B12 prod-
uct. (Middle) Same for the direction error, as compared with buoy direction.
(Bottom) Histogram of the buoy speeds. These statistics were generated from
all buoy matchups in year 2008 and that are statistics are done as a function
of the buoy speed. We show statistics for the V3L2B12 product in gray and
for the V2L2B12 product in black. These matchups include only data that have
been flagged as rain free. The overall statistics inset in plots have been com-
puted using only buoy matchups where the buoy speed was greater than 3 m/s.

obtained from numerous spaceborne scatterometers, which
show that there is a power-law scaling of 1.8 to 2.2 [22], [23]. In
Fig. 12, we plot the speed spectra and the spectra of the direc-
tion phasor as a function of the wavelength for the V3L2B12
and V2L2B12 products. As the wavelength decreases, we
see that the V2L2B12 product’s spectra show significantly
more “flattening” (spectral slope becomes more flat) than the
V3L2B12 product. Since we expect power-law behavior down
to scales on the order of 1 km, this deviation from the power
law indicates additional noise in the wind vector product due
to instrument limitations and processing [Rodríguez and Chau,
unpublished]. Both speed and direction spectra of the V2L2B12
product begin to deviate from the power law near the 200-km
wavelength, whereas the V3L2B12 product flattens near
100 km for the direction and 40 km for the speed. The reduction
in spectral “flattening” at smaller wavelengths significantly
indicates less small-wavelength noise in the V3L2B12 speeds
and directions, as compared with the V2L2B12 product.

The new processing algorithms have also reduced cross-
track dependent distortion of the spectra. In Fig. 13, we show
a contour plot of the spectra versus CTI and frequency, with
the speed spectra of the V2L2B12 product in the upper left,
that of the V3L2B12 product in the upper right, the direction
spectra2 of the V2L2B12 product in the lower left, and that of
the new product in the lower right. The plots for the V2L2B12
speed spectra have the same contour levels and color scaling as
those for the V3L2B12 speed spectra, and the same is true for
the direction spectra plots. Notice that the V3L2B12 product

2We compute the spectra of the phasor.

Fig. 12. (Top) Speed spectra for cross-track locations (21-51 and 101-123)
for the V2L2B12 product, the V3L2B12 product, and ECMWF that has been
interpolated to the WVC locations and times. (Bottom) Direction (phasor)
spectra for the same.

has a smaller white noise floor as indicated by more contour
levels and lighter shade as the frequency increases. In addition,
the V3L2B12 product shows less cross-track distortion of the
spectra contour levels, indicating improved performance in the
nadir region and far swath.

IV. TRENDS IN QUIKSCAT OVW OVER MISSION

In Fig. 14, we plot the monthly averages for the V3 and
V2L2B12 products as a function of time for the ten-year
QuikSCAT mission. We compute a linear fit and find that
there is a very small −2.83 cm/s/decade trend in the retrieved
wind speed. However, given the accuracy of the QuikSCAT
instrument, we do not believe this trend is significantly different
from zero. In [24], the authors found an 8 cm/s/decade trend in
the SSMI data set, and in [25], (also see [26] and [27]) a larger
trend was found.

V. SUMMARY

The newly introduced gridding algorithm improvements
have been shown to offer a very significant improvement in
the quality and utility of the 12.5-km QuikSCAT wind vectors.
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Fig. 13. (Upper left) Contour plot of the speed spectra versus CTI and
frequency for the V2L2B12 product. (Upper right) Same for the V3L2B12
product. (Lower left) Direction spectra for the V2L2B12 product. (Lower right)
Same for the V3L2B12 product. The color bars and contour levels for both
speed spectra plots are identical as are those for the direction spectra.

Fig. 14. (Top) Average QuikSCAT speed in the V3L2B12 product. (Bottom)
Same for the V2LB12 product. Each data point is an average over all rain-free
observations for one month. We see that QuikSCAT has a trend of −2.83 cm/s
per decade.

We have demonstrated that the new gridding algorithm results
in far less WVCs lacking wind retrievals, i.e., 2.6% for the
V2L2B12 product versus 0.22% for the V3L2B12 product.3

In addition, the new gridding algorithm and adjustments to the
DIR processing have resulted in a direction field with far less
noise than before; in particular, we have reduced the occurrence
of “shot” noise by a factor of 20. This reduction in noise
greatly improves the utility of the retrieved winds for computing
wind derivative products (divergence, curl, stress divergence,
and stress curl). We have compared our retrievals to ECMWF,
buoys, and SSMI and all show a significant reduction in the
RMS speed and direction (excluding SSMI) errors. The RMS
speed errors, as compared with ECMWF for rain-free data, have
been decreased from 1.52 to 1.44 m/s overall and the RMS
direction errors from 19.39◦ to 17.48◦. The overall speed RMS
difference, as compared with buoys, has decreased from 1.12 to

3Excluding 3 WVCs of each side of the swath.

1.02 m/s, and the direction RMS difference has decreased from
18.99◦ to 17.36◦.

The quality of our data in rain, as assessed using buoys and
ECMWF, is greatly improved by a new neural-network-based
rain correction [6]. As compared with ECMWF, the speed RMS
difference has decreased from 7 to 3.8 m/s. Using spectral
methods, we show that the direction resolution of the V3L2B12
product is improved due to the significantly reduced direction
noise. We show that the cross-track variation in spectral perfor-
mance has also improved from the previous processing. Finally,
we have shown that QuikSCAT has given stable estimates of
OVW for over a decade.
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